
CCA

Implementing the CCA Event Service
for HPC

Ian Gorton, Daniel Chavarria, Manoj
Krishnan, Jarek Nieplocha

Pacific Northwest National Lab

CCA

2

CCA 101

Component architecture for HPC

Components have provides and requires ports

A CCA compliant framework configures component
connections and launches computation

Component model current supports SCMD
approach

CCA

3

CCA Event Service 101

Publish-subscribe

 1-n, n-m, n-1

Specification is similar to:

 Java Messaging Service

 Many distributed event/messaging services

CCA

4

Conceptual Architecture

Event Service

SubscriberPublisher PublisherEventService SubscriberEventService

EventList

topic1

topic2

EventList

MasterTopicList// Create event service

Ev = new PublisherEventService();

// Create new topic

myTopic = Ev.getTopic (“topic1”);

// Create event

body = new TypeMap();

// … adding payload values omitted

// and finally send event

myTopic.sendEvent(“name”, body);

// Create event service

Ev = new SubscriberEventService();

// Create new topic

mySub = Ev.getSubscription (“topic1”);

// Create event listener

recv = new EventListener();

// … adding payload values omitted

// register listener to receive events

mySub.registerEventListener (“key”,

recv);

// and enter event loop to deliver events

While (running)

 ev.processEvents()

CCA

5

Possible use cases

Potential for a standard API for events/messaging
 Same address space

 Across address spaces

 Needs to be fast

 Handle a range of potential payload sizes
 Event/messaging service schizophrenia!!

Other work exists …
 ECho

 Grid event service

 Many others

CCA

6

Same Address Space/Process

CCA Component

Event

Service

CCA Component

CCA ComponentCCA Component

CCA

7

Multiple processes, same platform

CCA Component
CCA Component

CCA ComponentCCA Component

Event

Service

Shared

Memory

CCA

8

Nothing shared …

Event Service

CCA

Component

Event Service

CCA

Component

Event Service

CCA

Component

Event Service

CCA

Component

CCA

9

What we’ve been working on

Started with Utah CCA/SciRun event service
implementation

 As of August 2006

Created two standalone prototypes (no SIDL, no
framework):

 Reliable: events transferred via files

 Fast: events transferred over ARMCI on Cray XD1

 Single-sided memory transfers

CCA

10

Cray XD-1

FPGA

QDR1 QDR2

QDR3 QDR4

3.2 GB/s

(each)

RapidArray

processor

3.2 GB/s

3.2 GB/s

2 GB/s

To other

nodes

AMD

Opteron

AMD

Opteron
3.2 GB/s

FPGA

QDR1 QDR2

QDR3 QDR4

3.2 GB/s

(each)

RapidArray

processor

3.2 GB/s

2 GB/s

To other

nodes

AMD

Opteron

AMD

Opteron

RapidArray

processor

3.2 GB/s

2 GB/s

To other

nodes

AMD

Opteron

AMD

Opteron

RapidArray

Fabric

FPGA Node

Regular Node

ARMCI is part of the vendor-supplied

protocol stack on the XD-1, together with

MPI. Both protocols enable high-

bandwidth, low-latency communication

between nodes

CCA

11

Polygraph

Polygraph is a proteomics application developed at PNNL

 Analyzes protein spectra obtained from mass spectrometry experiments

 Each spectrum consists of position and intensity arrays (100 - 400 entries)

For each input, Polygraph scans a reference database of several
million proteins (FASTA, multi-GB size)

 Generates a list of matching peptides based on weight (thousands to millions of
candidates)

 Match list is refined further by computing a projected spectrum for the reference
data point and assigns it a score based on statistically generated datasets &
matching “peaks”

 Top matches are identified for each spectrum

Profile of the application indicates that 3 routines take 51% of the
exec. Time

 fpgenerate(), fp_set_hypoth(), fpextract()

CCA

12

Our Target – PolyGraph/FPGAs

Distributor

Results

Collector

Input

Data

CCA

fp_generate()

CCA

fp_generate()

publish

subscribe

publish

subscribe

subscribe

publish

ResultsTopic

processTopic1

processTopic2

FPGA Accelerator for fpgenerate()

CCA

13

ARMCI Prototype

Goals:

 maintain interface/semantics of the event service model

 achieve high performance in a distributed memory HPC system

Used combination of MPI & ARMCI

MPI - Process 0 operates as a Topic Directory process

 Maintains a Topic List with the locations of the publishers

 Uses an MPI messaging protocol to serve topic creation requests
and queries

ARMCI - Publishers create events locally in their own
address space

 Subscribers read remote events from the publishers using one-
sided ARMCI_Get() operations

 no need for coordination with the publisher

CCA

14

ARMCI Prototype (cont.)

Used a combination of MPI & ARMCI to create the event service

 Transfer C++ class instances directly over ARMCI without the need for type
serialization

 Events comprise two TypeMaps: header and body

Created a special heap manager for the ARMCI address space

 objects can be allocated directly through standard new() and delete()
operators

 synchronous garbage collection by the publisher

For high performance, all objects in the ARMCI heap are flattened

 no pointers or references to external objects

 member variables embedded

 fixed size

CCA

15

Initial Performance Results
We measured event processing rates:

 66K events/second with one publisher/one subscriber (small event 4KB)

 950 events/second with one publisher/16 subscribers (large event 50KB)

 Minimal overhead to reconstruct the object on the subscriber after the
transfer

Processing Rate

0.00

10,000.00

20,000.00

30,000.00

40,000.00

50,000.00

60,000.00

70,000.00

1 2 4 8 16

of subscribers

E
v

e
n

ts
/S

e
c

o
n

d

50 KB event size

4 KB event size

CCA

16

Analysis

Performance drops as number of subscribers
increases

 Not unsurprisingly :-}

 Contention for events at publisher ARMCI memory

Alternatives implementations are possible:
 Maintain topics for subscribers only in local ARMCI memory

 Publishers write to subscriber memory directly for each event
published

CCA

17

Alternative Design

Publisher

Topic 1

Subscriber

Topic 2

Master topic list

Sub1 Sub2

Sub1 Sub3

ARMCI Subscriber Buffer

Topic1

Topic struct

Topic2

mess mess

next

Maintain topic list in process 0 (using MPI) or ARMCI shared memory?

Send()

Strengths?

Likely reduced contention

Simplifies „publish semantics‟ and

event retention issues

Weaknesses?

Publish can fail if subscriber memory full

Some subscribers slower than others - events

delivered unpredictably depending on consumption

rate

CCA

18

Polygraph Issues: Delivery Semantics

Basic pub-sub good for N-to-N event distribution
 Need to keep events until all subscribers consume them

 Optional „time-to-live‟ in header can help

Workload distribution use cases require „load-
balancing‟ topics

 Same programmatic interface

 Each event consumed by only one subscriber

 No complex event retention issues

 Could define load-balancing policies for publishers

- Declaratively?

 A „one-to-one‟ queue-like mechanism may also be useful?

CCA

19

Issues: Topic Memory Management

Managing memory for a topic is tricky:
 Need to know how many subscribers for each specific event

 Events are variable size, hence allocating/reclaiming memory for
events is complex

One possibility: typed topics
 Associate an event type with a topic

 Specify maximum size for any event

 Simplifies memory management for each topic

CCA

20

Issues - Miscellaneous

What are semantics when a new subscriber
subscribes to a topic?

 What exactly do they see?

 All messages in topic queue at subscription time?

 Only new ones?

In ARMCI implementation, memory for topic
queues is finite

 Should it be user-configurable?

 What happens when topic memory full?

 Standard publish error defined by Event Service?

CCA

21

Other Implementation Issues

Should events have a „standard‟ header
 Used by all event service implementations

 Not settable programmatically

 E.g. Time-to-live, timestamp, correlation-id, likely others …

Push versus pull implementation model

Threading

Topic wildcarding

Message priorities

CCA

22

Since we wrote the paper …
//
// Event Service Specification (Draft as of February 6th 2007)
//
interface EventServiceException extends CCAException {
}
interface PublisherEventService extends cca.Port {
cca.Topic getTopic(in string topicName)

throws EventServiceException;
bool existsTopic(in string topicName);
}
interface SubscriberEventService extends cca.Port {
cca.Subscription getSubscription(in string subscriptionName)

throws EventServiceException;
void processEvents() throws EventServiceException;
}
interface Event extends sidl.io.Serializable {
cca.TypeMap getHeader();
cca.TypeMap getBody();
}
interface EventListener {
void processEvent(in string topicName, copy in Event theEvent);
}
interface Topic {
string getTopicName();
void sendEvent(in string eventName, in cca.TypeMap eventBody)

throws EventServiceException;
void release();
}
interface Subscription {
void registerEventListener(in string listenerKey,

in EventListener theListener) throws EventServiceException;
void unregisterEventListener(in string listenerKey);
string getSubscriptionName();
void release();
}

CCA

23

Next steps …

Implemented alternative „subscriber side‟ ARMCI
implementation

Detailed performance analysis
 As we speak …

Use Event Service to implement several use cases
 Polygraph

 Asynchronous IO

 Proteomics processing pipeline

 Hiding complexity of hybrid architectures

Would like to discuss others …
 Potential for collaboration?

