Implementing the CCA Event Service
for HPC

lan Gorton, Daniel Chavarria, Manoj
Krishnan, Jarek Nieplocha

Pacific Northwest National Lab

Pacific Northwest National Laboratory

Ba"e“e U.S. Department of Energy

CCA 101

» Component architecture for HPC
» Components have provides and requires ports

» A CCA compliant framework configures component
connections and launches computation

» Component model current supports SCMD
approach

Pacific Northwest National Laboratory
Batielle U.S. Department of Energy 2

CCA Event Service 101

Publish-subscribe

e 1-n, n-m, n-1

» Specification Is similar to:

e Java Messaging Service

e Many distributed event/messaging services

interface
<<SIDL>> interface
EventService <<SIDL>>
~ &l Operations—— 1 o Topic nterf
processEvents():voia _ [Operations nterface
CreateTopic(): Topic manages dEI:/ ¢ Jvoi <<SIDL>>
CreateWiticardTopic(): Wikdcard Topic SEnaTVentvom TypeMa
. yp P
getTopic(): Topic get??opfd\lame() String]
getWitlcard Topic(): Wikdcard Topic RegisteryentListener(): voa
Release Tapic():voio UnRegisterEventListener():voia
ReleaselVideardTopic():voia 2
x
interface
<<SIDL> >
Event
interface interface |- &I Operations:
<<SIDL> > <<SIDL> > setHeader():voia
) . Fventlist getHeader(): TypeMap
WildcardTopic ven _'s ener processes getBody (): TypeMap
- & Operations setBody():voia
processEvent(): voia

Pacific Northwest National Laboratory
Batielle U.S. Department of Energy 3

Publisher

O

Conceptual Architecture

Event Service
—

/I Create event service
Ev = new PublisherEventService();

/I Create new topic
myTopic = Ev.getTopic (‘topicl”);

/I Create event
body = new TypeMap();
/I ... adding payload values omitted

/I and finally send event
myTopic.sendEvent(‘name”, body);

Batielle

PublisherEventService

SubscriberEventService

MasterTopicList

topicl

topic2

L—EventList

ventList

g Subscriber

/I Create event service
Ev = new SubscriberEventService();

/I Create new topic
mySub = Ev.getSubscription (“topicl”);

/I Create event listener
recv = new EventListener();
/I ... adding payload values omitted

/I register listener to receive events
mySub.registerEventListener (“key”,
recv);

/I and enter event loop to deliver events
While (running)
ev.processEvents()

Pacific Northwest National Laboratory
U.S. Department of Energy 4

Possible use cases

» Potential for a standard API for events/messaging
e Same address space
e Across address spaces
e Needs to be fast
e Handle a range of potential payload sizes
m Event/messaging service schizophrenia!!
» Other work exists ...
e ECho
e Grid event service
e Many others

Pacific Northwest National Laboratory
Batielle U.S. Department of Energy 5

Batielle

Same Address Space/Process

CCA Component
CCA Component

CCA Component

CCA Component

Pacific Northwest National Laboratory

U.S. Department of Energy 6

Multiple processes, same platform

Shared

% Memory %

CCA Component
CCA Component
Event
Service

CCA Component CCA Component

Pacific Northwest National Laboratory
Battelle U.S. Department of Energy 7

Batielle

CCA
Component

Event Service

CCA
Component
Event Service

0

Event Service

CCA
Component

Event Service
CCA
Component

Nothing shared ...

Pacific Northwest National Laboratory
U.S. Department of Energy 8

What we’ve been working on

» Started with Utah CCA/SciRun event service
Implementation

e As of August 2006
» Created two standalone prototypes (no SIDL, no
framework):
e Reliable: events transferred via files

e Fast: events transferred over ARMCI on Cray XD1
= Single-sided memory transfers

Pacific Northwest National Laboratory
Batielle U.S. Department of Energy 9

Cray XD-1

FPGA Node

K A / \
Opteron Opteron
AMD AMD
I s Opteron Opteron
RapidArray ° 3.2 GB/:
processor (each)
N\)
k 3.2 GB/s ‘ QDR1 QDR2
To other J
nodes
2 3.2 GBIs Nt

3.2 GB/s

i 3 (each)
N\ ~
‘ QDR3 QDR4

RapidArray .
Fabric

N
/ \ To other
AMD AMD nodes
Opteron Opteron

ARMCI is part of the vendor-supplied
protocol stack on the XD-1, together with

Regular Node
Batielle

MPI. Both protocols enable high-
bandwidth, low-latency communication
between nodes

Pacific Northwest National Laboratory

U.S. Department of Energy 10

Polygraph

» Polygraph is a proteomics application developed at PNNL
e Analyzes protein spectra obtained from mass spectrometry experiments

e Each spectrum consists of position and intensity arrays (100 - 400 entries)

» For each input, Polygraph scans a reference database of several
million proteins (FASTA, multi-GB size)

e Generates a list of matching peptides based on weight (thousands to millions of
candidates)

e Maitch list is refined further by computing a projected spectrum for the reference
data point and assigns it a score based on statistically generated datasets &
matching “peaks”

e Top matches are identified for each spectrum

» Profile of the application indicates that 3 routines take 51% of the
exec. Time

e fpgenerate(), fp_set_hypoth(), fpextract()

Pacific Northwest National Laboratory
Batielle U.S. Department of Energy 11

Our Target — PolyGraph/FPGAs

ResultsTopic

subscribe

Results
Collector

processTopicl
CCA

W fp_generate()
Distributor
publish
CCA

processTopic2 fp_generate()

Input
Data

FPGA Accelerator for fpgenerate()

Pacific Northwest National Laboratory
Battelle U.S. Department of Energy 12

ARMCI Prototype

» Goals:

e maintain interface/semantics of the event service model
e achieve high performance in a distributed memory HPC system

» Used combination of MPI & ARMCI

» MPI - Process O operates as a Topic Directory process
e Maintains a Topic List with the locations of the publishers

e Uses an MPI messaging protocol to serve topic creation requests
and queries

» ARMCI - Publishers create events locally in their own
address space

e Subscribers read remote events from the publishers using one-
sided ARMCI_Get() operations

= no need for coordination with the publisher

Pacific Northwest National Laboratory
Batielle U.S. Department of Energy 13

ARMCI Prototype (cont.)

» Used a combination of MPI & ARMCI to create the event service

e Transfer C++ class instances directly over ARMCI without the need for type
serialization

e Events comprise two TypeMaps: header and body
» Created a special heap manager for the ARMCI address space

e objects can be allocated directly through standard new() and delete()
operators

e synchronous garbage collection by the publisher
» For high performance, all objects in the ARMCI heap are flattened
e nNoO pointers or references to external objects
e member variables embedded
e fixed size

Pacific Northwest National Laboratory
Batielle U.S. Department of Energy 14

transfer

70,000.00
60,000.00
50,000.00
40,000.00
30,000.00
20,000.00
10,000.00

0.00

Batielle

Initial Performance Results

We measured event processing rates:
e 66K events/second with one publisher/one subscriber (small event 4KB)
e 950 events/second with one publisher/16 subscribers (large event 50KB)
e Minimal overhead to reconstruct the object on the subscriber after the

Processing Rate

\

\

50 KB event size
=ill— 4 KB event size

D

2 4 8 16
of subscrib . .
OF subseribers Pacific Northwest National Laboratory

U.S. Department of Energy 15

Analysis

» Performance drops as nhumber of subscribers
Increases

e Not unsurprisingly :-}
e Contention for events at publisher ARMCI memory

» Alternatives implementations are possible:

e Maintain topics for subscribers only in local ARMCI memory

e Publishers write to subscriber memory directly for each event
published

Pacific Northwest National Laboratory
Batielle U.S. Department of Energy 16

Alternative Design

Maintain topic list in process 0 (using MPI) or ARMCI shared memory?
Master topic list

Topicl | Subl | Sub2
N

Topic2 | Subl %bs\
~

\ Topic struct
™ Topi N
op|cl » mess | mess
> next
™ Topic2
v
/ ARMCI Subscriber Buffer
Publisher | Send() Subscriber
Strengths? Weaknesses?
Likely reduced contention Publish can fail if subscriber memory full
Simplifies ‘publish semantics’ and Some subscribers slower than others - events
ST R s delivered unpredictably depending on consumption
rate
Pacific Northwest National Laboratory
Batielle

U.S. Department of Energy 17

Polygraph Issues: Delivery Semantics

» Basic pub-sub good for N-to-N event distribution

= Need to keep events until all subscribers consume them
= Optional ‘time-to-live’ in header can help

» \Workload distribution use cases require ‘load-
balancing’ topics
= Same programmatic interface
s Each event consumed by only one subscriber
= No complex event retention issues

= Could define load-balancing policies for publishers
- Declaratively?

= A ‘one-to-one’ queue-like mechanism may also be useful?

Pacific Northwest National Laboratory
Batielle U.S. Department of Energy 18

Issues: Topic Memory Management

» Managing memory for a topic is tricky:
= Need to know how many subscribers for each specific event

= Events are variable size, hence allocating/reclaiming memory for
events is complex

» One possibility: typed topics
= Associate an event type with a topic
= Specify maximum size for any event
= Simplifies memory management for each topic

Pacific Northwest National Laboratory
Batielle U.S. Department of Energy 19

Issues - Miscellaneous

» \What are semantics when a new subscriber
subscribes to a topic?
= What exactly do they see?
= All messages in topic queue at subscription time?
= Only new ones?

» In ARMCI implementation, memory for topic
gueues Is finite
= Should it be user-configurable?
= What happens when topic memory full?
m Standard publish error defined by Event Service?

Pacific Northwest National Laboratory
Batielle U.S. Department of Energy 20

Other Implementation Issues

Should events have a ‘standard’ header

m Used by all event service implementations
= Not settable programmatically
= E.g. Time-to-live, timestamp, correlation-id, likely others ...

» Push versus pull implementation model
» Threading

» Topic wildcarding

» Message priorities

Pacific Northwest National Laboratory
Batielle U.S. Department of Energy 21

vent Service Specification (Draft as of February 6th 2007)
/
interface EventServiceException extends CCAException {

interface PublisherEventService extends cca.Port {
cca.Topic getTopic(in string topicName)

throws EventServiceException;
bool existsTopic(in string topicName);

interface SubscriberEventService extends cca.Port {

cca.Subscription getSubscription(in string subscriptionName)
throws EventServiceException;

void processEvents() throws EventServiceException;

}

interface Event extends sidl.io.Serializable {

cca.TypeMap getHeader();

cca.TypeMap getBody();

interface EventListener {

void processEvent(in string topicName, copy in Event theEvent);

}

interface Topic {

string getTopicName();

void sendEvent(in string eventName, in cca.TypeMap eventBody)
throws EventServiceException;

void release();

interface Subscription {
void registerEventListener(in string listenerKey,
in EventListener theListener) throws EventServiceException;
void unregisterEventListener(in string listenerKey);
string getSubscriptionName();
void release();

Batielle

Since we wrote the paper ...

Pacific Northwest National Laboratory
U.S. Department of Energy 22

Next steps ...

Implemented alternative ‘subscriber side’ ARMCI
Implementation

» Detalled performance analysis
e As we speak ...

» Use Event Service to implement several use cases
e Polygraph
e Asynchronous IO
e Proteomics processing pipeline
e Hiding complexity of hybrid architectures

» \Would like to discuss others ...
e Potential for collaboration?

Pacific Northwest National Laboratory
Batielle U.S. Department of Energy 23

